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1. Introduction 
 
Mathematical calculations and practical experiments 

show that a composite, formed by a repetitive succession 
of media with different dielectric permittivities, named 
also Photonic Crystal, possesses frequency gaps and as a 
result the electromagnetic fields, with speeds of oscillation 
inside those gaps, cannot propagate through it [1], [2], [3], 
[4]. 

Therefore, photonic crystals can be defined as 
periodical media that have the property of forbidden 
frequency ranges, a radiation with the wavelength in their 
frequency gaps being unable to propagate inside these 
repetitive composites. The most usual and interesting type 
of photonic crystal, to date, is a dielectric material 
characterized by a cyclic electric permittivity that repents 
in space with a period comparable, as linear dimensions, 
with the wavelength of the radiation interacting with the 
dielectric.  

No simple formula, able to predict the size and 
positions of photonic crystals band gaps, exists [5], [6]. 
Unfortunately, when it comes to establishing the 
dispersion diagrams of this type of alternating structures, 
various articles present the results specifying that they 
have been obtained using a certain numerical method (for 
instance PWM – Plane Wave Method) implemented with a 
software conceived by the author, which if available is not 
well documented and written in a language you are not 
familiar with. For this reason, programs that calculate the 
structures of forbidden bands are hard to integrate in your 
own software, designed to study various properties of 
photonic crystals, and in conclusion, many people have to 
write their own piece of code able to calculate the 
dispersion diagrams, in other words, to solve Maxwell 
Equations for a periodic dielectric medium in the 
frequency space.  

The purpose of the present paper is to start from these 
equations and finally get a mathematical set of expressions 
that can be easily implemented in software, especially 
Matlab, with the goal of obtaining dispersion diagrams for 

any 2D dielectric photonic crystal having hexagonal 
symmetry. The cases of 1D crystals [7] and 2D structures 
with square symmetry can easily be particularized from 
the hexagonal one. 

 
 
2. The wave equation in the frequency  
     domain 
 
In classical physics, the propagation of 

electromagnetic waves in substance is studied using 
Maxwell Equations. The photonic crystals, being a 
repetitive succession of media, each of them extending in a 
volume many orders of magnitude greater than the 
dimensions of atoms, are perfectly suitable to be treated 
with these equations whose general form is: 
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where: E=E(r,t) is the intensity of the electric field, 
B=B(r,t) the magnetic induction, H=H(r,t) the intensity of 
magnetic field, D=D(r,t) the electric induction, j(r,t) the 
current density and ρ(r,t) the electric charge density. 

In Cartesian coordinates, the position vector r has the 
expression r=xex+yey+zez, where ex,z,y are versors 
corresponding to the x, y, z spatial directions. 

The quantities D and H are, in general, for an arbitrary 
medium, complicated function of the following four 
variables: t, r, E and B: 
 
 

( ) ( )BErHHBErDD ,;,,,;, tt == .         (5) 
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However, for an entire group of substances, relations 
(5) turn into simple linear dependencies if the intensities of  
E and B are relatively small. Thus, 

 

r
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where: ε is the electric permittivity of the medium, μ - 
magnetic permeability, ε0, μ0 - electric permittivity and 
magnetic permeability of vacuum respectively and εr, μr - 
electric permittivity and magnetic permeability of the 
medium in respect to vacuum. The equations (1) ÷ (14) 
can have an even simple form if none of the substances 
under consideration is magnetic, 
 

1=rμ ,                                       (7) 
 
and no density of electric charge or current exists, 
 

( ) ( ) 0,,0, == tt rrj ρ .                          (8) 
 
Conditions (7) and (8) are met for the majority of 
dielectrics, at small intensities of electric and magnetic 
fields. Unfortunately, all simplifications end here because 
photonic crystals have position dependent electric 
permittivity in the form of a repetitive function of r: 
 

( ) ( )Arr += rr εε , where A is the period.     (9) 
 

Therefore, substituting relations (6) ÷ (9) into 
Maxwell Equations (1) ÷ (4) and solving the system, two 
equivalent propagation equations: (10) and (11) and two 
conditions: {(12), (14)}or {(13), (15)} can be written: 
 

( ) 2

2

2
11

tcr ∂

∂
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×∇×∇

HH
rε

, (10) 

 

( ) ( )[ ]
2

2

2
11

tcr ∂

∂
−=×∇×∇

EE
rε

, (11) 

 
0=⋅∇ H , (12) 

 
0=⋅∇ H , (13) 

 
( )[ ] 0=⋅∇ Errε , (14) 

 
( )[ ] 0=⋅∇ Errε , (15) 

 
In the case of photonic crystals, of great interest is solving 
the two equations in the frequency domain. For that 
purpose H and E are considered being harmonic: 
 

( ) ( ) ( ) ( ) tjtj etbeta ωω rErErHrH == ,)(,,)( ,     (16) 
 

where ω is the pulsation of the field: 
 

 fπω 2=                                      (17) 
 

By replacing (16) (a) in (10) or (16) (b) in (11) the 
following atemporal expressions are obtained: 
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The equations (18) and (19) are useful for calculating 

the dispersion diagrams of various photonic crystals and 
implicitly for establishing their structures of frequency 
gaps. The equality (19), for instance, is general and can be 
solved for the full 3D case or simplifications in one or two 
dimensions. As stated in the beginning, this article deals 
only with the circumstance where the medium, taken into 
consideration, is two-dimensional, a case that splits in two 
branches.  

The first is the transversal electric possibility when 
E= Ez⋅ez that once replaced in (19) transforms it in (20) 
(the ez versor and z index will be considered implicit). 
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The relation (20) belongs to a category of equations 

that can be solved using the Bloch-Floquet theorem which 
(for the current situation) states that: if 1/εr(x,y) is a 
periodic function then: 

 
( ) ( ) ),(, yxgeyxE ykxkj yx += ,                (21) 

 
where g(x,y) is a repetitive function having the same 
period as 1/εr(x,y).  

In the particular situation of photonic crystals, εr(x,y) 
is by definition periodic which also imply that 1/εr(x,y) is 
also cyclic with  the same period as εr(x,y). 

The second case is the transversal magnetic one, when 
H(r)=Hz(x,y,z)·ez. This time, the equation (18) is used.  
First of all, the quantity ( )( ) ( )[ ]rHr ×∇×∇ rε1  needs to be 
evaluated. Thus, 
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Therefore, the following equation in H is obtained 
(where the z index and ez  versor are considered implicit): 
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(23) 
 

which can be used for calculating dispersion diagrams for 
TM modes.  
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3. The Fourier Transform for periodic electric  
     permittivity  
  
The equation (20), with εr repetitive, can be solved by 

applying the Fourier Transform to both sides of the 
equality. In the case of photonic crystals with hexagonal 
symmetry the basic brick of the structure is rhombic, like 
in Fig. 1, and in consequence the periodicity of εr(x,y) can 
be mathematically written as in expression (24).  
The present paragraph calculates the Fourier Transform of 
εr,, 1/εr or in general, of any repetitive 2D function having 
a periodicity as that in  Fig. 1. Once this transform is 
found, it can be used for solving equation (20).  
 

 
Fig. 1. Photonic crystal with hexagonal symmetry. 
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By definition, a square integrable function with n variables 
can be written as an integral sum in the following form 
[8]: 
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where p is the Fourier Transform of  f. Consequently, 
using (25), where f is replaced by ε, both members of the 
equality (24) can be expanded as follows: 
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which is satisfied if: 
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21, nn integers.

As a result, εr(x,y) is constrained to have the 
decomposition: 
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By multiplying both members with 
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 and 
integrating over one period (see Fig. 1), the expression 
(28) turns in: 
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In conclusion: 
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Using (31), equations (20) and (23) can be solved (see the 
next paragraph). 
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4. The matrices that give the dispersion  
    diagrams for TE, TM modes 
 
TE modes: Using  
(28)(28), εr

-1(x,y) from (20) can be put in the form: 
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Also, ( ) ( ) ),(, yxgeyxE ykxkj yx +=  is expanded as follows: 
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where

21 ,nnp and 
21,mmh are the coefficients of the two 

series.  
Thus, ( ) ( ) 2222 ,, yyxExyxE ∂∂+∂∂ can be written as: 
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and so, (20) transforms into: 
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Multiplying both members of (35): with 
( ) ( ) ( )[ ]32/22 121)3/sin(/1 ymmxmajea ′−′+′− ππ  and integrating 
with respect to y over the interval [ 43a− , 43a ] and x 

over [ 23 ay − , 23 ay + ], the following equality is 
found: 

 
( ) ( )[ ]

( )
( )[ ]

( )

( )[ ]
( )

( )[ ]
( )∑ ∑

∑ ∑ ∑ ∑

∞

−∞=

∞

−∞=

′′

∞

−∞=

∞

−∞=

∞

−∞=

′′

∞

−∞=

′−
′−

′−
′−

=

=
′−+
′−+

′−+
′−+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
++⎟

⎠
⎞

⎜
⎝
⎛ +

++

1 2

2,21,1

21

1 2 1

2,221,11

2

2121

22

22

11

11
,2

2

222

222

111

111
2

12
2

1,,

sinsin

sinsin
3

222

m m

mmmm

mm

n n m

mnmmnm

m
yxnnmm

mm
mm

mm
mm

h
c

mnm
mnm

mnm
mnmmm

a
km

a
kph

44 344 2144 344 21

444 3444 21444 3444 21

δδ

δδ

π
π

π
πω

π
π

π
πππ

          (36) 

 
For an arbitrary ),( 21 mm ′′ pair, the majority of terms, 
situated left and right in respect to the equality sign, will 
disappear and (36) simplifies to: 
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which represents a system of equations that, if solved, 
gives a set of eigen frequencies, ωk. 

In practice, the m indexes will be taken: 
2211 ,,, mmmm ′′  ∈ [-M, M] where M is a positive integer. 

For each of the (2M+1) x (2M+1) values of ),( 21 mm ′′  an 
equation like (37) exists where the coefficients 

2211 , mmmmp −′−′  have indexes that vary in the interval          
[-2M, 2M] and can be calculated (see (31)) with the 
formula:   
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where the following notations have been made:  
222111 , mmnmmn −′=−′= . 

In conclusion (37) with 2211 ,,, mmmm ′′  ∈ [-M, M] is a 
system in the form: 
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that can be calculated for any given yx kkmmmm ,,,,, 2211 ′′ . 
h is a column matrix possessing (2M+1) x (2M+1) 
elements, 

21,mmh , of unknown values. It can be noticed 
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that (39) is satisfied, independently of h, if 
( ) 0det 22 =− cωS which gives (2M+1)2 possible ωk. 
Therefore, for any given (kx, ky), (2M+1)2 values for ω 

are found and, in this way, the dispersion diagram  
ω=ω(kx, ky) is obtained. As can be noticed, a single pair of 
given (kx, ky) require solving a system of (2M+1)2 
equations where for good precisions M have to be 
increased till no difference is observed between ω=ω(kx, 

ky) calculated with (2M+1)2 and with (2(M+1)+1)2 
equations. 
TM modes: The expression (37) is valid only for the TE 
modes. For finding its equivalent corresponding to the TM 
situation, the equation (23) have to be utilized as starting 
point. Using the same deductions as in the case of TE 
modes, the following expressions can be successively 
written: 
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The decompositions obtained from (41) and (42) 
together with (32) and (33) (where E(x,y) is replaced by 
H(x,y)) are introduced in (23). After simplifying by ejk·r, 
multiplying by ( ) ( ) ( )[ ]32/22 121)3/sin(/1 ymmxmajea ′−′+′− ππ  

and integrating in respect to y over the interval 
[ 43a− , 43a ] and to x over [ 23 ay − , 23 ay + ], the 
following equality results: 
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For an arbitrary pair ),( 21 mm ′′ , the majority of terms from 
the left and right of the equal sign disappear, (43) turning 
in: 
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for TM modes where the same explanations as given for 
equation (37), corresponding to the TE situation, remain 
valid.  

As already explained, by solving (37) and (44) the 
dispersion diagrams, ω=ω(kx, ky), are obtained. It can be 
shown that, for a photonic crystal with hexagonal 
symmetry (whose basic cell is described by the vectors a1 
and a2 as in Fig. 2), a reciprocal cell, defined by b1, b2 (see 
Fig. 2), exists in the spatial frequencies domain (dual 
space). Therefore, the periodicity ε(r)=ε(r+A) has a pair in 

the dual domain, ω(k)=ω(k+B), and in consequence it is 
enough to compute ω for k inside just one elementary cell 
B. More than that, if ε(r) has some symmetry inside the 
photonic crystal cell, then also ω(k) has symmetries inside 
B and this property further reduces the range of k for 
which ω have to be evaluated. In the particular cases of the 
crystals given as examples, in the following paragraph, it 
is sufficient to calculate the dispersion diagrams just for 
values of k lying inside the triangular domain LXM (see 
Fig. 2), called irreducible Brillouin zone. More, numerical 
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calculations show that the worst scenario, with the 
smallest band gaps, happens for wavenumbers k along the 
contour LXML, and for this reason, diagrams ω=ω(k) will 

not be represented for the entire surface of the triangle 
LXM but just for the contour LXML. 
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Fig. 2. The vectors that describe: normal space (left) and the dual space (right). LXML is the path alongh which the 
dispersion diagrams will be graphed. 

 
 

5. Dispersion diagrams and band gaps.  
     Numerical results. 
 
Using (37) and (44) the dispersion diagrams for the 

TE and TM modes, corresponding to a few particular 
geometries of photonic crystals with hexagonal symmetry, 
will be calculated. A total of three configurations are 
studied. For each situation, the entry parameters are given 
in the description of the case, beneath the figure or 
diagram. The significations of these parameters are: 
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⎩
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backroung)  (called cell elementary  theofrest  in the 

hexagon)  triangle,(circle,element  geometric specific  theinside 
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rb
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(b) f = the filling factor defined as the fraction between the 
surface of the geometric element and that of the entire cell. 
(c) fmax= maximum filling factor attainable. Also, for each 
case, some specific parameters as r (the radius of the 
circular element in Fig. 3) and d (the length of the triangle 
or hexagon edges, Fig. 6, Fig. 9) are given. Another 
important parameter is N x N = (2M+1) x (2M+1) (see the 

explanations for the equation (37)) that represents the 
number of discretisation elements in which the basic cell 
of the crystal is divided. 

Regarding the diagrams in Fig. 4, Fig. 5, Fig. 7,     
Fig. 8, Fig. 10, Fig. 11 a few explanations have to be 
given: (1) A scaled frequency, ωa/2πc, was represented on 
the y axis in order the dispersion diagrams could be read at 
any frequency and any elementary cell size. Thus, 
supposing that ωa/2πc=0.4 (see one of the diagrams) 
which is equivalent to fa/c=0.4 (ω=2πf) or a/λ=0.4, and 
knowing the crystal cell edge length, a=0.6 μm, then λ=1.5 
μm which corresponds to f=66 THz. (2) Both transversal 
electric and magnetic diagrams have been represented on 
the same figure for each crystal. The curves with dotted 
line correspond to TM modes and the ones with solid line 
to TE modes. Also, for clarity, the TM and TE gaps have 
been marked using color bands and in the case of total 
forbidden frequency zones (for both modes) the gap was 
hatched with oblique lines. As can be seen from diagrams, 
various band structures are obtained when εra, εrb and the 
geometrical figure shape, inside the crystal cell, are varied.  
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Fig. 3. Periodic element defined by: r=0.2a; N×N=33×33 (two cases of (εra, εrb) are considered). 
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Fig. 4. r=0.2a; εra=5; εrb=1; N×N=33×33. 
 
 

 
 
 

Fig. 5. r=0.2a; εra=12; εrb=1; N×N=33×33. 
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Fig. 6. Periodic element defined by: rcc=0.42a; N×N=37×37 (two cases of (εra, εrb) are considered). 
 

 
 

Fig. 7. rcc=0.22a; εra=12; εrb=1; N×N=37×37. 
 

 
Fig. 8. rcc=0.22a; εra=1; εrb=12; N×N=37×37. 
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Fig. 9. Periodic element defined by: rcc=0.27a; N×N=37×37 (two cases of (εra, εrb) are considered). 
 

 
 

Fig. 10. rcc=0.27a; εra=12; εrb=1; N×N=37×37. 
 

 
 

Fig. 11. rcc=0.27a; εra=1; εrb=12; N×N=37×37. 
 
 

5. Conclusions 
 
Systems (37) and (44) can be used for obtaining 

dispersion diagrams and implicitly band gaps for a variety 
of dielectric two-dimensional photonic crystals with 
hexagonal symmetry. Both systems are in a form that can 
be easily implemented in software, especially in Matlab 

where, due to the richness of the already existing 
subroutines, just a few program loops need to be written 
for computing the coefficients in (37) and (44) with which 
a square matrix is generated and finally the eigenvalues of 
it are extracted using a general function already available 
in Matlab. Each set of ω eigenvalues corresponds to a 
wavenumber, k=kxex+kyey, that can be chosen to vary 
along an arbitrary path or in a given domain. In practice, 
due to symmetry reasons, it is enough to take k along 
LXML path (see Fig. 2). 

As regarding the numerical examples, they are given 
just for demonstrative purposes, in order to show the 
correctness of the formula written in the current paper. For 
a thorough investigation, on how the size of certain band 
gaps are affected by the contrast between εra, εrb and other 
parameters of the crystal cell, many diagrams have to be 
computed while a single entry value is varied in a certain 
range of interest.   
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